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Abstract. We construct ZM , M = 2, 3, 4, 6 orbifold models of the N = 2 superconformal field
theories with central charge c = 3. Then we check the description of the Z3, Z4 and Z6 orbifolds
by the N = 2 superconformal Landau–Ginzburg models with c = 3, by comparing the spectrum
of chiral fields, in particular the Witten index Tr(−1)F .

1. Introduction

The complete understanding of the modulus space ofN = 2 superconformal field theories with
central charge c = 3 needs a description of all its orbifold theories. In a nonlinear σ -model
description, this concerns two-dimensional tori and their orbifolds. For Z3, Z4 and Z6 orbifolds,
Vafa and Warner [16] made predictions for (chiral, chiral) and (antichiral, antichiral) fields
based on Landau–Ginzburg descriptions. Apparently, they never had been checked explicitly.
The moduli spaces of those orbifold theories were obtained in [10]. For Landau–Ginzburg
descriptions for the three orbifolds, we use the superpotentials 	3

1 + 	3
2 + 	3

3 + 6a	1	2	3,
	4

1 + 	4
2 + a	2

1	
2
2 and 	3

1 + 	6
2 + a	2

1	
2
2, respectively. Note that we are interested in one-

dimensional modulus spaces, such that one needs superpotentials with one free parameter a
or, in other words, singularities of modality one. Correlation functions for these potentials
have been studied in [7, 12]. Here we calculate the ZM orbifold partition functions and check
the predictions of Vafa and Warner. For c = 6 similar calculations have been formulated by
Eguchi et al [5]. There, charges behave in a simpler way than for c = 3. When fermions are
omitted from the c = 3 superconformal theories, one obtains c = 2 bosonic theories. In this
case the partition function for the Z2 orbifold was given in [9].

The N = 2 superconformal field theories with c = 3 [1] are described by a free
chiral scalar superfield containing two real bosons or a single complex left (right) boson
ϕ±(z) = ϕ1(z) ± iϕ2(z) (ϕ̄±(z̄) = ϕ̄1(z̄) ± iϕ̄2(z̄)) (each of c = 1) and two Majorana–
Weyl (MW) fermions or a free complex left (right) fermion ψ±(z) = ψ1(z) ± iψ2(z)

(ψ̄±(z̄) = ψ̄1(z̄) ± iψ̄2(z̄)) (each of c = 1
2 ). The action for this system may be written

as

S = 1

2π

∫
d2z (Gij ∂ϕ

i ∂̄ϕj + Bij ∂ϕ
i ∂̄ϕj + ψ−∂̄ψ+ + ψ+∂̄ψ−). (1)

In string theory language, this action corresponds to the superstring compactification on a
two-dimensional torus T 2 = R

2/�. For the two-dimensional lattice �, we use a basis
{ei} ∈ R (i = 1, 2). The action (1) depends on four real parameters or moduli, the constant
symmetric metric Gij = 1

2eiej on T 2, and the antisymmetric tensor field Bij = −Bji . It
has N = 2 superconformal symmetry. Directly from the action, we can determine the
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generators of the N = 2 superconformal algebra, the stress-energy tensor T (z), its super
partners Qi(z) = Q1(z) ± iQ2(z) (i = 1, 2) and the U(1) current J (z) with conformal
dimensions h equal to 2, 3

2 and 1, respectively:

T (z) = − 1
2∂ϕ

−(z)∂ϕ+(z)− 1
4ψ
−∂ψ+(z)− 1

4ψ
+(z)∂ψ−(z)

Q±(z) = ψ∓(z)∂ϕ±(z) J (z) = 1

2
ψ−(z)ψ+(z) = i

2
εijψi(z)ψj (z).

(2)

Similar relations hold for the antiholomorphic (right moving) generators of the N = 2
superconformal algebra. They have the Laurent expansions

T (z) =
+∞∑

n=−∞
Lnz

−n−2 Qi(z) =
+∞∑

r=−∞
Qrz

−r− 3
2 J (z) =

+∞∑
n=−∞

Jnz
−n−1

and satisfy the N = 2 superconformal algebra that can be found in [1, 14]. There are three
different N = 2 superconformal algebras, namely Ramond (R) (or periodic (P)), Neveu–
Schwarz (NS) (or antiperiodic (A)) and twisted (T) algebras which correspond to different
ways of choosing boundary conditions on the cylinder. Whatever boundary condition we
choose, the Virasoro generator Ln is always integrally moded, because the bosonic stress-
energy tensor is always periodic on the cylinder. For the R algebra, Jn and Qi

r are integrally
moded, i.e. n and r run over integral values. For the NS algebra, Jn are integrally moded, Qi

r

are half-integrally moded, i.e. r run over half-integral values. The T algebra has integer modes
for Q1

r and half integer modes for Jn and Q2
r .

A field satisfying h = ±q/2 is a left chiral or left antichiral primary field. (Similarly,
a field satisfying h̄ = ±q̄/2 is a right chiral or right antichiral primary field.) Note that the
fermionic fields {ψ±(z), ψ̄±(z̄)} all satisfy the above condition since they have charge±1 and
conformal dimension 1

2 for both the left movers and right movers. The left primary chiral
fields are {1, ψ+(z)}; the right chiral primary fields are {1, ψ̄+(z̄)}. The left and right antichiral
primary fields are obtained from these by complex conjugation. Note that the conformal
dimensions and U(1) charges of a unique highest left–right chiral or antichiral primary field
are (h, h̄) = (c/6, c/6) = ( 1

2 ,
1
2 ) and (q, q̄) = (±c/3,±c/3) = (±1,±1), respectively (here

c = 3).
In general forN = 2 superconformal theories, there are four types of ring [11] arising from

the various combinations of left–right chiral and left–right antichiral fields. We denote these
rings by (c, c), (a, a), (a, c), (c, a). They are pairwise conjugate. For the ZM , M ∈ {3, 4, 6},
orbifolds of N = 2 superconformal theories with c = 3, and for N = 2 superconformal
Landau–Ginzburg models, one obtains only (c, c) and its conjugate (a, a) rings. For such
models, the (a, c) and (c, a) rings are trivial and consist only of the identity operator. We shall
see this point explicitly in the discussion of ZM orbifolds and Landau–Ginzburg models.

The basic linearly independent elements of the (c, c) ring of the N = 2 superconformal
field theory with c = 3 are given by

R(c,c) = {1, ψ+(z), ψ̄+(z̄), ψ+(z)ψ̄+(z̄)}. (3)

Similarly, for the (a, c) ring one has

R(a,c) = {1, ψ−(z), ψ̄+(z̄), ψ−(z)ψ̄+(z̄)}. (4)

The elements of the two other rings R(a,a) and R(c,a) are obtained from R(c,c) and R(a,c) by
complex conjugation.

The conformal dimensions and U(1) charges of the ground states of the R sector are
(h, h̄) = (c/24, c/24) = ( 1

8 ,
1
8 ) and (q, q̄) = (± 1

2 ,± 1
2 ), which also contribute to the Witten

index Tr(−1)F [17]. The operator (−1)F , whereF = FL+FR, andFL,FR are left–right moving
fermion numbers, defined to anticommute with all the fermionic operators (−1)Fψ(z) =
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−ψ(z)(−1)F , and to commute with all the bosonic operators (−1)F ϕ(z) = ϕ(z)(−1)F , as
well as to satisfy ((−1)F )2 = 1. It can be defined in terms of zero-mode U(1) current as

(−1)F = eπ i(J0−J̄0).

It is well known that one can connect the NS sector to the R sector by the spectral flow [14]
operation. It is a continuous transformation and has the following form:

Lηn = Ln + ηJn +
c

6
η2δn,0

J ηn = Jn +
c

3
ηδn,0

Q±ηr = Q±r±η.
The η twisted operators Lηn,Q

±η
r and J ηn still satisfy the N = 2 superconformal algebra for an

arbitrary value of the parameter η. In particular, the zero-mode eigenvalues h of L0 and q of
J0 are changed by spectral flow as

hη = h + ηq + η2 c

6
qη = q + η

c

3
. (5)

By (5) with flow parameter η = 1
2 , the ground states of the R sector with conformal dimension

(h, h̄) = ( 1
8 ,

1
8 ) and charge (q, q̄) = (± 1

2 ,± 1
2 ) flow to the NS chiral primary fields with

conformal dimension (h, h̄) = ( 1
2 ,

1
2 ) and charge (q, q̄) = (+1,+1), or (h, h̄) = (q, q̄) =

(0, 0). The flow between the NS and NS as well as R and R can be obtained by the flow
parameter η = 1. Besides, under the left–right symmetric spectral flow, q − q̄ ∈ Z does not
change. Thus the Witten index [10] is

Tr(−1)F = TrR[(−1)J0−J̄0qL0− c
24 q̄L̄0− c

24 ]

= TrHη
[(−1)J

η

0 −J̄ η0 qL
η

0− c
24 q̄L̄

η

0− c
24 ]

= TrNS[(−1)J0−J̄0qL0+ 1
2 J0 q̄L̄0+ 1

2 J̄0 ] =
∑
R

eiπ(q−q̄) (6)

where the Hη in the second line is the Hilbert space of states which is twisted by the parameter
η. The R in the last line denotes the chiral ring. The first line implies that the ground state of
the R sector gives nonvanishing contribution to the Witten index. The second line is obtained
by applying the spectral flow to the first line. By setting η = 1

2 one can flow from the R sector
to the NS sector. (Note that J η0 − J̄ η0 = J0− J̄0.) Thus the Witten index receives contributions
from either the ground states of the R sector or the chiral primary states of NS sector. The only
difference between the charges of the NS chiral primary states and that of the R ground states
is c/6.

The Poincaré polynomial [11] is

P(t, t̄) = TrR tJ0J̄0 (7)

which satisfies a duality relation P(t, t̄) = (t t̄)c/3P(1/t, 1/t̄). Here t and t̄ can be regarded as
independent variables. By (3), (6) and (7), the Witten index and the Poincaré polynomial are

Tr(−1)F = 0 P(t, t̄)(c,c) = 1 + t + t̄ + t t̄ . (8)

One notes that the Poincaré polynomial (8) and ring structure for (c, c) and (a, c) primary
fields are isomorphic. However, this is not true in general.

The partition function for the N = 2 superconformal theories with c = 3 is constructed
by tensoring the theory of a complex free boson defined on a two-dimensional torus T 2 in the
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presence of constant background fields, with the theory of a single complex Dirac fermion,
namely

Z(τ, ρ, z) := Z(τ, ρ, σ )ZDirac(σ, z).

In the following we briefly discuss how the explicit expression ofZ(τ, ρ, z) can be formulated.
The Z(τ, ρ, σ ) is the modular invariant partition function for two real bosons compactified on
the two-dimensional torus [6]

Z(τ, ρ) := Z(τ, ρ, σ ) = tr qL
b
0− 1

12 q̄L̄
b
0− 1

12 = 1

|η2(σ )|2
∑
n1 ,m1
n2 ,m2

q
p2

2 q̄
p̄2

2 (9)

where q = e2π iσ , σ = σ1 + iσ2 parametrizes the world sheet torus, and η(σ ) is the Dedekind
eta function defined as

η(σ ) = q 1
24

∞∏
n=1

(1− qn).

The Virasoro zero-mode operators for the bosons in (9) are given by

Lb0 =
∑
n>0

αi−nα
i
n + 1

2p
2 L̄b0 =

∑
n>0

ᾱi−nᾱ
i
n + 1

2 p̄
2. (10)

The left–right moving zero-mode momentum p and p̄ in (9) are defined as

(p, p̄) := (nie∗i + e∗iBjimj + 1
2ejm

j , nie
∗i + e∗iBjimj − 1

2ejm
j ) (11)

where {e∗i } are basis vectors for the dual lattice �∗ of �, which satisfies eie∗j = δij such that

e∗ie∗j = 1
2G

ij ; the integers ni and mi are the momentum and winding numbers. The action
of Lb0 and L̄b0 in (10) on the ground state |m1,m2, n1, n2〉, which is labelled by the momentum
and winding numbers, is given by

Lb0|m1,m2, n1, n2〉 = 1
2p

2|m1,m2, n1, n2〉 L̄b0|m1,m2, n1, n2〉 = 1
2 p̄

2|m1,m2, n1, n2〉
where we have used αin|m1,m2, n1, n2〉 = 0 and ᾱjm|m1,m2, n1, n2〉 = 0 for n > 0, m > 0. It
is well known [13] that the momenta in (11) form a four-dimensional Lorentzian lattice with
scalar product (p, p̄)·(p′, p̄′) = (p·p′−p̄·p̄′), which is even (becausep2−p̄2 = 2mini ∈ 2Z)
and self-dual (because � = �∗). From (11), we easily write

p2(p̄2) = 1
2ninjG

ij + nimjBjlG
il ± nimi + 1

2mimj (Gij + BjkBilG
kl). (12)

In the two-dimensional case, it is convenient to group the four real parameters (G11, G12, G22

and B12) in terms of two parameters τ and ρ in the upper complex half-plane as follows:

τ = τ1 + iτ2 = G12

G22
+ i

√
G

G22
ρ = ρ1 + iρ2 = B12 + i

√
G.

Here τ represents the complex structure of the target space torus T 2, and ρ is its complexified
Kähler structure; both take values on the complex upper half-plane; G = det(Gij ). Now we
write (12) in terms of τ and ρ in the following form:

p2 = 1

2τ2ρ2
|n1 − τn2 − ρ(m2 + τm1)|2

p̄2 = 1

2τ2ρ2
|n1 − τn2 − ρ̄(m2 + τm1)|2.

Finally, the torus partition function (9) takes the form

Z(τ, ρ) = 1

|η2(σ )|2
∑
n1 ,m1
n2 ,m2

q
1

4τ2ρ2
|n1−τn2−ρ(m2+τm1)|2 q̄

1
4τ2ρ2
|n1−τn2−ρ̄(m2+τm1)|2 . (13)
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If τ1 = ρ1 = 0 (or G12 = B12 = 0), then the torus partition function (13) is the product
of two circle partition functions [8] at c = 1 with radius r1 =

√
G22 =

√
ρ2/τ2 and

r2 =
√
G11 = √τ2ρ2

Z(τ2, ρ2) = Zc=1
(√
ρ2/τ2

)
Zc=1

(√
τ2ρ2

)
.

The partition function for the Dirac fermion can be constructed by taking equal spin structures
for the left and right fermions [8]

ZDirac(σ, z) = tr qL
f

0− 1
24 q̄L̄

f

0− 1
24 yJ0 ȳJ̄0

= 1

2

(∣∣∣∣ϑ1(z, σ )

η(σ )

∣∣∣∣
2

+

∣∣∣∣ϑ2(z, σ )

η(σ )

∣∣∣∣
2

+

∣∣∣∣ϑ3(z, σ )

η(σ )

∣∣∣∣
2

+

∣∣∣∣ϑ4(z, σ )

η(σ )

∣∣∣∣
2
)

(14)

where y = e2π iz. Since the fermionic theory splits into NS and R sectors, the Virasoro zero-
mode generator for the Dirac fermions in (14) is given by

L
f

0 =
∑
n>0

ndi−nd
i
n n∈ Z + 1

2 (NS)

L
f

0 =
∑
n>0

ndi−nd
i
n + 1

8 n ∈ Z (R).

A similar relation is true for the right-moving component. The classical Jacobi theta functions
ϑi(z, σ ), i ∈ {1, 2, 3, 4} in (14) are defined in terms of sums and products as

θ1(z, σ ) = −i
∞∑

n=−∞
(−1)nq

1
2 (n− 1

2 )
2
yn−

1
2 = −iy

1
2 q

1
8

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn−1)

θ2(z, σ ) =
∞∑

n=−∞
q

1
2 (n− 1

2 )
2
yn−

1
2 = y 1

2 q
1
8

∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn−1)

θ3(z, σ ) =
∞∑

n=−∞
q

n2

2 yn =
∞∏
n=1

(1− qn)(1 + yqn−
1
2 )(1 + y−1qn−

1
2 )

θ4(z, σ ) =
∞∑

n=−∞
(−1)nq

n2

2 yn =
∞∏
n=1

(1− qn)(1− yqn− 1
2 )(1− y−1qn−

1
2 ).

The partition function for the N = 2 superconformal theories with c = 3 is thus given as

Z(τ, ρ, z) := Z(τ, ρ)ZDirac(σ, z)

= 1

|η2(σ )|2 q
1

4τ2ρ2
|n1−τn2−ρ(m2+τm1)|2 q̄

1
4τ2ρ2
|n1−τn2−ρ̄(m2+τm1)|2

×1

2

(∣∣∣∣ϑ1(z, σ )

η(σ )

∣∣∣∣
2

+

∣∣∣∣ϑ2(z, σ )

η(σ )

∣∣∣∣
2

+

∣∣∣∣ϑ3(z, σ )

η(σ )

∣∣∣∣
2

+

∣∣∣∣ϑ4(z, σ )

η(σ )

∣∣∣∣
2
)
. (15)

2. General prescription for ZM orbifold construction

In this section we will give the general procedure for the construction of the ZM orbifolds. In
fact there are not many two-dimensional ZM orbifolds, because the order M rotation must be
an automorphism of some two-dimensional lattice; therefore ZM must have orderM = 2, 3, 4
and 6. M = 3 andM = 6 require the hexagonal lattice (τ = e2π i/3); M = 4 requires a square
lattice (τ = i). Under the ZM symmetry bosonic fields and its modes α±n transform as

(gkϕ)±(z) = e±
2π ik
M ϕ±(z) gkα±n g

−k = e±
2π ik
M α±n k = 1, 2, . . . ,M − 1. (16)
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Since we want to discuss superconformal orbifold theories, we should include the worldsheet
fermion ψs as well. They transform as

(gkψ)±(z) = e±
2π ik
M ψ±(z) gkd±n g

−k = e±
2π ik
M d±n k = 1, 2, . . . ,M − 1. (17)

In fact this is also required by theN = 2 superconformal invariance. The ZM rotations are the
symmetries of both the action (1) andN = 2 world sheet supersymmetry generators (2). Thus
the two-dimensional N = 2 superconformal orbifold models T 2/ZM may be constructed by
identifying points of the two-dimensional torus T 2 under the symmetry group ZM .

Let H̃ be the Hilbert space of an orbifold theory. It has two sectors, namely untwisted
and twisted sectors, i.e. H̃ = H̃u ⊕ H̃t . Let us consider first the untwisted sector of the
orbifold theory. The untwisted Hilbert space will be a subspace of the Hilbert space for the
N = 2 theories with c = 3. In the path integral for the partition function this means that the
bosonic fields obey periodic boundary conditions along the space direction of the torus and
twisted periodic boundary conditions in time. So on an orbifold, the untwisted sector boundary
conditions on the bosonic field are given as

ϕ+(1) = ϕ+(0) + 2π�

ϕ+(σ ) = gϕ+(0) + 2π�
(18)

where g ∈ ZM . For an R or NS fermion one has

ψ+(1) = ±ψ+(0)

ψ+(σ ) = ±gψ+(0).
(19)

Under the above boundary conditions, the bosonic field has the expansion

ϕ+(z) = q+ − ip+ ln z + i
∑
n �=0

1

n
α+
nz
−n (20)

and for the fermionic field one has

ψ+(z) =
∑
n

d+
n z
−n
{
n ∈ Z (R)
n ∈ Z + 1

2 (NS).
(21)

The untwisted Hilbert space H̃u decomposes into the ZM invariant and noninvariant space of
states. In order to construct consistent models, we must project out the group noninvariant
space of states. In the Hamiltonian formalism, group invariant states are obtained by insertion
of the projection operator P = 1

|ZM |
∑

g∈ZM g into the trace over states. Here |ZM | is the
number of elements in ZM and the sum

∑
g runs over all elements in ZM . Thus the untwisted

sector partition function is

Zu = trH̃u
P qL0− 1

8 q̄L̄0− 1
8 yJ0 ȳJ̄0 . (22)

Here trH̃u
denotes the trace in the untwisted Hilbert space sectors and L0 = Lb0 + Lf0 . In

the path integral formalism, projection onto group invariant states in the untwisted sector is
represented as

Zu = 1

|ZM |
∑
g∈ZM

g

1

where we sum over all possible twistings in the time direction of the torus. g

1

represents

boundary conditions on any generic fields in the theory twisted by g in the time direction of
the torus. The partition function of the original model is simply given by Z = 1

1

.
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The untwisted sector partition function is not modular invariant; one should take into
account the contributions of the T sector Hilbert space of states. For each element h ∈ ZM

one can construct a twisted Hilbert space H̃h. In the path integral description the bosonic field
obeys the twisted boundary conditions

ϕ+(1) = hϕ+(0) + 2π�

ϕ+(σ ) = gϕ+(0) + 2π�.
(23)

For R or NS fermions one has
ψ+(1) = ±hψ+(0)

ψ+(σ ) = ±gψ+(0)
(24)

where h and g are twists on the fields in the space and time direction of the torus. The mode
expansion of the bosonic field which satisfies the boundary conditions (23) is

ϕ+(z) = q+
f + i

∑
n∈Z+k/M

1

n
α+
nz
−n. (25)

One cannot have nonzero momentum or winding number here, since they are not consistent
with the twisted boundary conditions. In this mode expansion q+

f denote the fixed points of
T 2 under the ZM symmetry. The index f labels these fixed points. The mode expansion of
the fermionic field which satisfies the boundary conditions (24) is

ψ+(z) =
∑

n∈Z+k/M+ 1
2−s/2

d+
n z
−n k = 1, . . . ,M − 1 (26)

where s is equal to zero in the NS sector, and to one in the R sector. The twisted Hilbert
space H̃t decomposes into ZM invariant and noninvariant spaces of states. To construct
consistent models, we again have to project onto group invariant states. In the Hamiltonian
formalism, group invariant states are obtained by insertion of the projection operator Ph :=

1
|ZM |

∑
g∈ZM :[g,h]=0 g into the trace over states. In the path integral formalism, projection onto

group invariant states in the T sector is represented as

Zt = 1

|ZM |
∑
g,h∈ZM,

h�=1,[g,h]=0

g

h

where g

h

represents boundary conditions on the fields twisted by g and h in the time and

space direction of the torus. Thus the T sector partition function has the form

Zt =
∑

h∈ZM,h �=1

trH̃h
Phq

L0− 1
8 q̄L̄0− 1

8 yJ0 ȳJ̄0 = 1

|ZM |
∑
g,h∈ZM,

h�=1,[g,h]=0

g

h

. (27)

In fact, one may obtain the T sector partition function from (22) by modular transformations
σ → σ + 1 and σ →−1/σ . Thus, the total modular invariant ZM orbifold partition function
is a sum of (22) and (27):

ZZM−orb = 1

|ZM |
∑
g∈ZM

g

1

+
1

|ZM |
∑

g,h∈ZM,h �=1

g

h

= 1

|ZM |
∑
g,h∈ZM,

[g,h]=0

g

h

=
∑
h∈ZM

trH̃h
Phq

L0− 1
8 q̄L̄0− 1

8 yJ0 ȳJ̄0 (28)

where we set H̃1 := H̃u and P1 := P . There is no discrete torsion for the ZM orbifolds, since
all boxes g

h

are related by modular tranformations to a box of type g

1

. Mathematically,
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the discrete torsion for a discrete group G is obtained from the cohomology H2(G), which
vanishes for G = ZM [15].

In summary, in order to construct an orbifold model, one first formulates the Hilbert space
of states on the torus, then one projects onto the group invariant states, finally one includes T
sector contributions. For more details see [2–4].

3. The Z2 orbifold

The two-dimensional N = 2 superconformal Z2 orbifold model T 2/Z2 can be constructed
from (15) for arbitrary τ and ρ. Thus we may now produce another family of theories, i.e. Z2

orbifold superconformal field theories with the same set of moduli as the N = 2 theories with
c = 3 by following the general orbifold prescription introduced in section 2. The action of
g ∈ Z2 on the bosonic Hilbert space sectors |m1,m2, n1, n2〉 is given by

g|m1,m2, n1, n2〉 = | −m1,−m2,−n1,−n2〉. (29)

In the following, we only discuss the bosonic part since the sum over the spin structures for the
Dirac fermion is invariant under ψ± → −ψ±. Under the Z2 symmetry the untwisted bosonic
Hilbert spaces H̃u decomposes into g = ±1 eigenspaces H̃u = H̃+

u ⊕ H̃−u as

H̃+
u = {α+

−k1
. . . α+

−kl ᾱ
+
−kl+1

. . . ᾱ+
−k2j

(1 + g)|m1,m2, n1, n2〉}
+{α+
−k1

. . . α+
−kl ᾱ

+
−kl+1

. . . ᾱ+
−k2j+1

(1− g)|m1,m2, n1, n2〉}
H̃−u = {α+

−k1
. . . α+

−kl ᾱ
+
−kl+1

. . . ᾱ+
−k2j+1

(1 + g)|m1,m2, n1, n2〉}
+{α+
−k1

. . . α+
−kl ᾱ

+
−kl+1

. . . ᾱ+
−k2j

(1− g)|m1,m2, n1, n2〉}
where ki takes positive integer values. By (22), the untwisted Z2 orbifold partition function is

Zu = (qq̄)− 1
8 trH̃u

1
2 (1 + g)qL0 q̄L̄0yJ0 ȳJ̄0 .

The first term in the trace is equal to the partition function in (15) since there is no twist
along the two cycles of the torus. The second term in the trace with g inserted only receives
a contribution from the sector m1 = m2 = n1 = n2 = 0 because each state obtained by
acting on (1 + g)|m1,m2, n1, n2〉 with creation operators has a counterpart with the same L0

eigenvalue obtained by acting on (1 − g)|m1,m2, n1, n2〉 with the same creation operators;
however, these two states have opposite eigenvalues under g ∈ Z2, and their contributions
cancel in the trace. Thus, only the states obtained by creation operators α+

−k or ᾱ+
−k acting

on the vacuum |0, 0, 0, 0〉 will contribute. Therefore the overall untwisted sector partition
function is

Zu = 1

2

(
1

|η2|2
∑
n1 ,m1
n2 ,m2

q
p2

2 q̄
p̄2

2 +
(qq̄)−

1
12∏∞

n=1(1 + qn)2(1 + q̄n)2

)
ZDirac

= 1

2

(
Z(τ, ρ) + 4

∣∣∣∣ η(σ )ϑ2(σ )

∣∣∣∣
2
)
ZDirac.

Under the symmetry action g: ϕ+ → −ϕ+ the torus has four fixed points. This implies that
there are four twisted ground states with conformal dimension h = h̄ = 1

8 . So one may build
four distinct Hilbert space sectors. However, these sectors lead to isomorphic physics, as they
are related by translation symmetry of the torus. Denote the four T sector ground states by
| 18 , 1

8 〉f , where f = 1, 2, 3, 4. Like the untwisted bosonic Hilbert space sector, the twisted
bosonic Hilbert space decomposes into g = ±1 eigenspaces H̃t = H̃+

t ⊕ H̃−t as

H̃+
t = α+

−k1
. . . α+

−kl ᾱ
+
−kl+1

. . . ᾱ+
−k2j
| 18 , 1

8 〉f
H̃−t = α+

−k1
. . . α+

−kl ᾱ
+
−kl+1

. . . ᾱ+
−k2j+1
| 18 , 1

8 〉f
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where ki takes half positive integer values. By (27), the T sector partition function is

Zt = (qq̄)− 1
12 trH̃t

1
2 (1 + g)qL0 q̄L̄0ZDirac

= 4× 1

2



∣∣∣∣∣ q

1
24∏∞

n=1(1− qn−
1
2 )2

∣∣∣∣∣
2

+

∣∣∣∣∣ q
1

24∏∞
n=1(1 + qn−

1
2 )2

∣∣∣∣∣
2

ZDirac

= 4× 1

2

(∣∣∣∣ η(σ )ϑ4(σ )

∣∣∣∣
2

+

∣∣∣∣ η(σ )ϑ3(σ )

∣∣∣∣
2
)
ZDirac. (30)

Then the complete modular invariant Z2 orbifold partition function has the form

ZZ2−orb = 1

2

(
Z(τ, ρ) + 4

∣∣∣∣ η(σ )ϑ2(σ )

∣∣∣∣
2

+ 4

∣∣∣∣ η(σ )ϑ3(σ )

∣∣∣∣
2

+ 4

∣∣∣∣ η(σ )ϑ4(σ )

∣∣∣∣
2
)
ZDirac. (31)

The (c, c), (a, c), and their complex conjugates, R ground states as well as the Witten index
for the Z2 orbifold are the same as those for the N = 2 theories with c = 3.

4. The Z3 orbifold

By dividing the Z3 symmetry from (15) for τ = e2π i/3 and arbitrary ρ, we may construct the
Z3 orbifold model. The action of g ∈ Z3 on the bosonic Hilbert space sectors is given by

g|m1,m2, n1, n2〉 = |m2,−m1 −m2, n2 − n1,−n1〉. (32)

By (22), the untwisted sector partition function is

Zu = (qq̄)− 1
8 trH̃u

1
3 (1 + g + g2)qL0 q̄L̄0yJ0 ȳJ̄0 .

By taking into account the equations (16), (17), (20), (21) and (32), the first term in the
trace is equal to the original partition function (15); the second and third terms only receive a
contribution from the Hilbert space sector built on |0, 0, 0, 0〉. The untwisted sector partition
function is therefore given by

Zu = 1

3

(
Z(τ = e2π i/3, ρ, z) +

3

2

4∑
i=1

(∣∣∣∣ϑi(z + 1
3 , σ )

ϑ1(
1
3 , σ )

∣∣∣∣
2

+

∣∣∣∣ϑi(z−
1
3 , σ )

ϑ1(
1
3 , σ )

∣∣∣∣
2))

.

Z3 does not act freely on the hexagonal torus. Thus one must consider new sectors, the twisted
ones. In the T 2/Z3 (τ = e2π i/3) manifold, there are three fixed points, and one can obtain
three Hilbert space sectors corresponding to the expansion of the field about each of these
fixed points. However, these three sectors give the same physics. The conformal weight of
the bosonic twisted ground state is ( 1

9 ,
1
9 ). For a fermion, the T sector conformal weight is

( 1
18 ,

1
18 ). Thus the total conformal weight of the T sector is then ( 1

6 ,
1
6 ). States in the T sector

are generated by the action of creation operators on the twisted ground state.
By considering the equations (16), (17), (25), (26) and (32), the T sector partition function

may be written as

Zt = (qq̄)− 1
8 trH̃t

1
3 (1 + g + g2)qL0 q̄L̄0yJ0 ȳJ̄0

= 3× 1

2× 3

4∑
i=1

1∑
l=−1



∣∣∣∣∣y− 1

3
ϑi(z + l

3 − σ
3 , σ )

ϑ1(
l
3 − σ

3 , σ )

∣∣∣∣∣
2

+

∣∣∣∣∣y 1
3
ϑi(z + l

3 + σ
3 , σ )

ϑ1(
l
3 + σ

3 , σ )

∣∣∣∣∣
2

 .

(33)
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Then the complete modular invariant Z3 orbifold partition function is

ZZ3−orb = 1

3

(
Z(τ = e

2π i
3 , ρ, z) +

3

2

4∑
i=1

2∑
s=1

∣∣∣∣ϑi(z + s
3 , σ )

ϑ1(
s
3 , σ )

∣∣∣∣
2

+
3

2

1∑
l=−1

4∑
i=1

(∣∣∣∣y− 1
3
ϑi(z + l

3 − σ
3 , σ )

ϑ1(
l
3 − σ

3 , σ )

∣∣∣∣
2

+

∣∣∣∣y 1
3
ϑi(z + l

3 + σ
3 σ)

ϑ1(
l
3 + σ

3 , σ )

∣∣∣∣
2))

. (34)

We find eight R ground states with conformal dimension (h, h̄) = ( 1
8 ,

1
8 ) and with charges

(± 1
2 ,± 1

2 ), 3 × (± 1
6 ,± 1

6 ), eight NS chiral primary states with conformal dimensions (0, 0),
( 1

2 ,
1
2 ), 3 × ( 1

6 ,
1
6 ), 3 × ( 1

3 ,
1
3 ) and with charges (0, 0), (1, 1), 3 × ( 1

3 ,
1
3 ), 3 × ( 2

3 ,
2
3 ), as well

as eight NS antichiral primary states having the same conformal dimensions but the opposite
charges to the NS chiral fields. By (5) with η = 1

2 , the ground states of the R sector flow to
the (c, c) primary states of the NS sector, namely

R ground states←→ NS chiral states

q
1
8 q̄

1
8 y−

1
2 ȳ−

1
2 ←→ 1

q
1
8 q̄

1
8 y

1
2 ȳ

1
2 ←→ q

1
2 q̄

1
2 yȳ

3× q 1
8 q̄

1
8 y−

1
6 ȳ−

1
6 ←→ 3× q 1

6 q̄
1
6 y

1
3 ȳ

1
3

3× q 1
8 q̄

1
8 y

1
6 ȳ

1
6 ←→ 3× q 1

3 q̄
1
3 y

2
3 ȳ

2
3 .

(35)

(Here q = e2π iσ and y = e2π iz.) If we reverse the direction of the spectral flow, we obtain an
isomorphism between the (a, a) primary states and the ground states of the R sector. By (6),
(7) and (35) the Witten index and the Poincaré polynomial for the (c, c) states are

Tr(−1)F = 8 P(t, t̄)(c,c) = 1 + t t̄ + 3t
1
3 t̄

1
3 + 3t

2
3 t̄

2
3 . (36)

The spectral flow from the NS sector to the NS sector can be obtained by the flow parameter
η = 1. In the spectrum, there are no nontrivial (a, c) or its conjugate (c, a) states.

5. The Z4 orbifold

In this section, by dividing the Z4 symmetry from (15) for τ = i and arbitrary ρ, we may
formulate the Z4 orbifold model. The action of g ∈ Z4 on the bosonic ground state sectors is
given by

g|m1,m2, n1, n2〉 = |m2,−m1, n2,−n1〉. (37)

Under the rotation group Z4 the square lattice has three fixed points. An analysis similar to
the Z3 orbifold shows there are T sectors associated with those fixed points, namely one fixed
point corresponding to the Z2 twist and two for the Z4 twist. The weights of the bosonic
and fermionic Z4 twisted ground state are ( 3

32 ,
3

32 ) and ( 1
32 ,

1
32 ), respectively. Thus the total

conformal weight of the Z4 T sector is ( 1
8 ,

1
8 ). The total Z4 orbifold partition function can be

obtained by summing over untwisted, Z2 and Z4 T sector partition functions:

ZZ4−orb(τ = i, ρ, z) = Zu + Z2t + Z4t .

By (16), (17), (20)–(22) and (37), we obtain the following untwisted sector partition function:

Zu = (qq̄)− 1
8 trH̃u

1
4 (1 + g + g2 + g3)qL0 q̄L̄0yJ0 ȳJ̄0

= 1

4

(
Z(τ = i, ρ, z) +

4∑
i=1

∣∣∣∣ϑi(z, σ )ϑ2(σ )

∣∣∣∣
2

+
4∑
i=1

3∑
s=1

∣∣∣∣ϑi(z + s
4 , σ )

ϑ1(
s
4 , σ )

∣∣∣∣
2)
.
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By (16), (17), (25)–(27) and (37), Z4 the T sector partition function may have the form

Z4t = 1

4

4∑
i,l=1



∣∣∣∣∣y− 1

4
ϑi(z + l

4 − σ
4 , σ )

ϑ1(
l
4 − σ

4 , σ )

∣∣∣∣∣
2

+

∣∣∣∣∣y 1
4
ϑi(z + l

4 + σ
4 , σ )

ϑ1(
l
4 + σ

4 , σ )

∣∣∣∣∣
2

+

∣∣∣∣∣ϑi(z + l
4 , σ )

ϑ4(
l
4 , σ )

∣∣∣∣∣
2

 .

The Z2 T sector partition function can be read off from (30) by omitting the factor of four.
Thus, we may write the modular invariant Z4 orbifold partition function in the following form:

ZZ4−orb = 1

4

4∑
i,l=1

(
Z(τ = I, ρ, z) +

4∑
j=2

∣∣∣∣ϑi(z, σ )ϑj (σ )

∣∣∣∣
2

+
3∑
s=1

∣∣∣∣ϑi(z + s
4 , σ )

ϑ1(
s
4 , σ )

∣∣∣∣
2

+

∣∣∣∣ϑi(z + l
4 , σ )

ϑ4(
l
4 , σ )

∣∣∣∣
2

+

∣∣∣∣y− 1
4
ϑi(z + l

4 − σ
4 , σ )

ϑ1(
l
4 − σ

4 , σ )

∣∣∣∣
2

+

∣∣∣∣y 1
4
ϑi(z + l

4 + σ
4 , σ )

ϑ1(
l
4 + σ

4 , σ )

∣∣∣∣
2)
.

(38)

In the spectrum there are nine R ground states which flow to the NS chiral states under
the spectral flow operation (5)with flow parameter η = 1

2

R ground states←→ NS chiral states

q
1
8 q̄

1
8 y−

1
2 ȳ−

1
2 ←→ 1

q
1
8 q̄

1
8 y

1
2 ȳ

1
2 ←→ q

1
2 q̄

1
2 yȳ

2× q 1
8 q̄

1
8 y−

1
4 ȳ−

1
4 ←→ 2× q 1

8 q̄
1
8 y

1
4 ȳ

1
4

2× q 1
8 q̄

1
8 y

1
4 ȳ

1
4 ←→ 2× q 3

8 q̄
3
8 y

3
4 ȳ

3
4

3× q 1
8 q̄

1
8 ←→ 3× q 1

4 q̄
1
4 y

1
2 ȳ

1
2 .

(39)

There are nine (a, a) states which are given by the complex conjugation of (c, c) states. As
in the Z3 orbifold case, one can obtain isomorphism between the (a, a) primary states and
the ground states of the R sector by reversing the direction of the spectral flow. By (6), (7)
and (39), the Witten index and the Poincaré polynomial for the (c, c) states are

Tr(−1)F = 9

P(t, t̄)(c,c) = 1 + t t̄ + 3t
1
2 t̄

1
2 + 2t

1
4 t̄

1
4 + 2t

3
4 t̄

3
4 .

(40)

With the spectral flow parameter η = 1, the NS sector returns to the NS sector. One notes that
the Z4 orbifold model contains only (c, c) and their conjugate (a, a) states. For this model,
the (a, c) and (c, a) states are trivial and consist only of the vacumm state.

6. The Z6 orbifold

We now construct a Z6 orbifold model by dividing Z6 symmetry from (15) for τ = e2π i
3 and

arbitrary ρ. The bosonic ground state sectors transform as follows under the action of g ∈ Z6:

g|m1,m2, n1, n2〉 = |m1 +m2,−m1, n2,−n1 + n2〉. (41)

The hexagonal torus has three fixed points under the Z6 rotation symmetry. There is a T sector
associated with each of them. These are Z2, Z3 and Z6 T sectors. The conformal dimensions
of the bosonic and fermionic Z6 twisted ground state are ( 5

72 ,
5

72 ) and ( 1
72 ,

1
72 ), respectively.

Thus the total conformal weight of the Z6 twisted ground state is ( 1
12 ,

1
12 ). The Z6 orbifold

partition function is the sum of partition functions of the untwisted, Z2, Z3 and Z6 T sectors:

ZZ6−orb(τ = e
2π i
3 , ρ, z) = Zu + Z2t + Z3t + Z6t .



5356 S Dulat

By applying the same method as for the construction of the Z2, Z3 and Z4 orbifolds, we obtain
the following untwisted Z6 orbifold partition function:

Zu = (qq̄)− 1
8 trH̃u

1
6 (1 + g + · · · + g5)qL0 q̄L̄0yJ0 ȳJ̄0

= 1

6

(
Z(τ = e

2π i
3 , ρ, z) +

3

2

4∑
i=1

∣∣∣∣ϑi(z, σ )ϑ2(σ )

∣∣∣∣
2

+
3

2

4∑
i=1

2∑
s=1

∣∣∣∣ϑi(z + s
3 , σ )

ϑ1(
s
3 , σ )

∣∣∣∣
2

+
1

2

4∑
i=1

1∑
l=−1

∣∣∣∣ϑi(z + l
3 , σ )

ϑ2(
l
3 , σ )

∣∣∣∣
2)
.

The Z2 and Z3 T sector partition functions can be read off from (30) and (33) by omitting the
factor of four and three, respectively. The Z6 T sector partition function may have the form

Z6t = 1

12

4∑
i,k=1

1∑
l=−1

(∣∣∣∣ϑi(z + l
3 , σ )

ϑ3(
l
3 , σ )

∣∣∣∣
2

+

∣∣∣∣ϑi(z + l
3 , σ )

ϑ4(
l
3 , σ )

∣∣∣∣
2

+

∣∣∣∣y 1
3
ϑi(z + l

3 + σ
3 , σ )

ϑk(
l
3 + σ

3 , σ )

∣∣∣∣
2

+

∣∣∣∣y− 1
3
ϑi(z + l

3 − σ
3 , σ )

ϑk(
l
3 − σ

3 , σ )

∣∣∣∣
2)
.

All in all we obtain the following modular invariant partition function

ZZ6−orb = 1

6

4∑
i=1

4∑
j=2

(
Z(τ = e

2π i
3 , ρ, z) +

3

2

∣∣∣∣ϑi(z, σ )ϑj (σ )

∣∣∣∣
2

+
3

2

2∑
s=1

∣∣∣∣ϑi(z + s
3 , σ )

ϑ1(
s
3 , σ )

∣∣∣∣
2

+
1

2

1∑
l=−1

(
2

∣∣∣∣y− 1
3
ϑi(z + l

3 − σ
3 , σ )

ϑ1(
l
3 − σ

3 , σ )

∣∣∣∣
2

+ 2

∣∣∣∣y 1
3
ϑi(z + l

3 + σ
3 , σ )

ϑ1(
l
3 + σ

3 , σ )

∣∣∣∣
2

+

∣∣∣∣ϑi(z + l
3 , σ )

ϑj (
l
3 , σ )

∣∣∣∣
2

+

∣∣∣∣y− 1
3
ϑi(z + l

3 − σ
3 , σ )

ϑj (
l
3 − σ

3 , σ )

∣∣∣∣
2

+

∣∣∣∣y 1
3
ϑi(z + l

3 + σ
3 , σ )

ϑj (
l
3 + σ

3 , σ )

∣∣∣∣
2))

.

(42)

In this model there are ten R ground states. Again we connect the ground states of the R
sector with NS chiral primary states using equation (5) with η = 1

2 .

R ground states←→ NS chiral states

q
1
8 q̄

1
8 y−

1
2 ȳ−

1
2 ←→ 1

q
1
8 q̄

1
8 y

1
2 ȳ

1
2 ←→ q

1
2 q̄

1
2 yȳ

2× q 1
8 q̄

1
8 ←→ 2× q 1

4 q̄
1
4 y

1
2 ȳ

1
2

q
1
8 q̄

1
8 y

1
3 ȳ

1
3 ←→ q

5
12 q̄

5
12 y

5
6 ȳ

5
6

q
1
8 q̄

1
8 y−

1
3 ȳ−

1
3 ←→ q

1
12 q̄

1
12 y

1
6 ȳ

1
6

2× q 1
8 q̄

1
8 y

1
6 ȳ

1
6 ←→ 2× q 1

3 q̄
1
3 y

2
3 ȳ

2
3

2× q 1
8 q̄

1
8 y−

1
6 ȳ−

1
6 ←→ 2× q 1

6 q̄
1
6 y

1
3 ȳ

1
3 .

(43)

By (6), (7) and (43), the Witten index and the Poincaré polynomials for the (c, c) states are

Tr(−1)F = 10

P(t, t̄)(c,c) = 1 + t t̄ + 2t
1
2 t̄

1
2 + t

5
6 t̄

5
6 + t

1
6 t̄

1
6 + 2t

2
3 t̄

2
3 + 2t

1
3 t̄

1
3 .

(44)

The (a, a) states are given by the complex conjugation of (c, c) states. We found no (a, c) or
(c, a) states in this model.
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7. The N = 2 Landau–Ginzburg model

In this section, we first review some of the facts of theN = 2 superconformal Landau–Ginzburg
theories by following the articles [11, 16], then we check the spectrum of the (c, c) fields and
the Witten index. The N = 2 superconformal Landau–Ginzburg action takes the following
form:

S =
∫

d2z d4θ K(	i, 	̄i) +

(∫
d2z d2θ W(	i) + HC

)
. (45)

	i(i = 1, 2, . . . , n) are the N = 2n chiral scalar superfields which satisfy the condition
D̄±	i = D±	̄i = 0, where the superderivative is defined asD± = ∂

∂θ± + θ∓ ∂
∂z

. The first term
(K) is called the Kähler potential. It includes derivatives of the superfields. The conformal
dimension of these fields is greater than (1, 1). Such fields are called irrelevant. The second
term (W) is called the superpotential and is a holomorphic function of the superfields. It
contains only relevant fields, i.e. fields with conformal dimension (1, 1) or less than (1, 1). The
holomorphic superpotentialW(	i) is a quasi-homogeneous function with isolated singularities
at 	i = 0. In other words W(	i) is called quasi-homogeneous if it satisfies

W(λwi	i) = λdW(	i) for 	i → λwi	i (46)

where wi and d are integers with no common factors. It has isolated singularity at 	i = 0 if
it satisfies

W(	i)|0 = 0 ∂iW(	j )|0 = 0.

For every isolated quasi-homogeneous superpotential, there exists an N = 2
superconformal field theory. One can read off the U(1) charge of the lowest component
of the chiral superfields 	i from the action (45). The θ integrals in the first term have (left,
right) charges (−1,−1). Because of neutrality of the action W(	i) has charge (1, 1). Thus,
the chiral superfield	i must have charge qi = wi/d for both its left-right-moving components.
Now one notes that for any state in the Landau–Ginzburg theory qL− qR is always an integer.
This is true for the chiral superfield 	i , as it has equal left–right charges. Moreover, it is also
true for the most general fields because they are obtained by taking products of 	i and 	̄i , as
well as products of their superderivatives. This implies that one can apply spectral flow to the
Landau–Ginzburg models.

The local ring R of the superpotentialW(	i) of the Landau–Ginzburg model is obtained
by taking into account all monomials of chiral superfields 	i and setting ∂iW(	j )|0 = 0.
The number of elements of the ring is denoted by µ = dim R. It is called the multiplicity of
W(	i). It is also equal to the Witten index Tr(−1)F .

The modality (or moduli) is the number of free parameters in the theory. m of a quasi-
homogeneous superpotential with isolated singularities is given by the number of chiral primary
states with charge greater than or equal to one.

The Poincaré polynomial [11] for the Landau–Ginzburg theories is

P(t) = TrR tdJ0 =
n∏
i=1

1− td−wi
1− twi or P(t, t̄) = TrR tJ0 t̄ J̄0 . (47)

This polynomial is only a function of t t̄ (because Landau–Ginzburg primary chiral fields have
equal left–right charges). For convenience, t t̄ is replaced by the variable td , where d is defined
in (46). The Witten index [11] is

Tr(−1)F = P(t = 1) = µ =
n∏
i=1

d − wi
wi

=
n∏
i=1

(
1

qi
− 1

)
. (48)
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The highest charge and conformal dimension of the chiral primary state |χ〉 [11] are given as

qχ =
∞∑
i=1

d − 2wi
d

=
∑
i

(1− 2qi) hχ = qχ

2
=

n∑
i=1

(
1

2
− qi

)
.

By using hχ = c
6 , the central charge of the Landau–Ginzburg theory is given as

c = 6hχ = 6
n∑
i=1

( 1
2 − qi).

It is well known [16] that the quasi-homogeneous superpotentials with isolated
singularities for modality m = 1 of the Landau–Ginzburg theories at c = 3 are equivalent
to the ZM , M ∈ {3, 4, 6}, orbifolds of the N = 2 theories at c = 3. The corresponding
superpotentials are given as

W3(	1,	2,	3) = 	3
1 +	3

2 +	3
3 + 6a	1	2	3 a3 + 27 �= 0 (49)

W4(	1,	2) = 	4
1 +	4

2 + a	2
1	

2
2 a2 �= 4 (50)

W6(	1,	2) = 	3
1 +	6

2 + a	2
1	

2
2 4a3 + 27 �= 0. (51)

With the knowledge in this section, we may write the basic linearly independent elements of
the (c, c) ring of superpotential (49) in the following form:

Chiral fields 1 	1 	2 	3 	1	2 	1	3 	2	3 	1	2	3

Charges 0 1
3

1
3

1
3

2
3

2
3

2
3 1

Dimensions 0 1
6

1
6

1
6

1
3

1
3

1
3

1
2 .

(52)

By (47), (48) and (52), the Witten index and Poincaré polynomial are

Tr(−1)F = 8 P(t, t̄)(c,c) = TrR tJ0 t̄ J̄0 = 1 + t t̄ + 3t
1
3 t̄

1
3 + 3t

2
3 t̄

2
3 . (53)

For the superpotential (50) we have

Chiral fields 1 	1 	2 	1	2 	2
1 	2

2 	2
1	2 	1	

2
2 	2

1	
2
2

Charges 0 1
4

1
4

1
2

1
2

1
2

3
4

3
4 1

Dimensions 0 1
8

1
8

1
4

1
4

1
4

3
8

3
8

1
2 .

(54)

By (47), (48) and (54), the Witten index and Poincaré polynomial are

Tr(−1)F = 9 P(t, t̄)(c,c) = 1 + t t̄ + 3t
1
2 t̄

1
2 + 2t

1
4 t̄

1
4 + 2t

3
4 t̄

3
4 . (55)

Similarly, for the superpotential (51) we may obtain

Chiral fields 1 	1 	2 	1	2 	2
2 	3

2 	4
2 	1	

2
2 	1	

3
2 	1	

4
2

Charges 0 1
6

1
3

1
2

2
3

1
3

1
2

2
3

5
6 1

Dimensions 0 1
12

1
6

1
4

1
3

1
6

1
4

1
3

5
12

1
2 .

(56)

By (47), (48) and (56), the Witten index and Poincaré polynomial are

Tr(−1)F = 10 P(t, t̄)(c,c) = 1 + t t̄ + 2t
1
2 t̄

1
2 + t

5
6 t̄

5
6 + t

1
6 t̄

1
6 + 2t

2
3 t̄

2
3 + 2t

1
3 t̄

1
3 . (57)

Conclusion

The partition functions for ZM orbifolds have been calculated. The Witten indices, the spectrum
of (chiral, chiral) fields for the ZM , M ∈ {3, 4, 6}, orbifolds and for the Landau–Ginzburg
superpotentials (49–51) are given in equations (36), (40), (44), (35), (39), (43) and (52), (54),
(56), (53), (55), (57), respectively. The results are in in agreement with the Landau–Ginzburg
predictions of Vafa and Warner.



Orbifolds of N = 2 superconformal theories with c = 3 5359

Acknowledgments

It is a great pleasure to thank my supervisor Professor Werner Nahm for countless very helpful
and very encouraging discussions. I would like to thank K Wendland for numerous helpful
discussions. I also would like to thank D Brungs for his help with Mathematica. I am grateful
to M Soika for his help with LaTeX, and for proofreading, as well as for his constant hospitality.
I am also grateful to H Eberle for proofreading.

This work was supported by Deutscher Akademischer Austauschdienst (DAAD) and in
part by TMR.

References

[1] Boucher W, Friedan D and Kent A 1986 Determinant formula and unitarity for the N = 2 superconformal
algebras in two dimensions or exact results on string compactification Phys. Lett. B 172 316–21

[2] Dixon L, Friedan D, Martinec E and Shenker S 1987 The conformal field theory of orbifolds Nucl. Phys. B 282
13–73

[3] Dixon L, Harvey J, Vafa C and Witten E 1985 Strings on orbifolds Nucl. Phys. B 261 678–86
[4] Dixon L, Harvey J, Vafa C and Witten E 1986 Strings on orbifolds Nucl. Phys. B 274 285–314
[5] Eguchi T, Ooguri H, Taormina A and Yang S-K 1989 Superconformal algebras and string compactification on

manifolds with SU(n) holonomy Nucl. Phys. B 315 193–221
[6] Philippe Di Francesco, Pierre Mathieu and David Sénéchal 1997 Conformal Field Theory (New York: Springer)
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